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Preface

The object of this book is to explain some of the ideas in modern
information theory and to show how they can he applied to cer-
tain problems in signal transmission and signal deteclion. Tt is
not intended as a text or reference work, It evolved [rom several
sets of lectures at various times and places to audiences of scien-
tists and engineers who had no specialized knowledge of com-
munications or information theory. The earliest sections, which
introduce the fundamental ideas of amount of information and
channel capacity, may nevertheless be of interest to readers with
less technical background.
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INFORMATION THEORY

An Introduction for Scientists and Engineers



A Definition of Information®

L1 Why a New Definition?

Some paradoxes and misunderstandings about information have
arisen in recent years as the science of information theory has heen
disseminated. The first misunderstanding is the beliel that any
intelligent person ought to know what the word information means.

In any specialized study, new concepts arise that must have

names. Sometimes we name the concept afler a person: Doppler

shift, Planck’s conslant. Sometimes we give it a number or letter:
g

* Many of the ideas of this chapter are adapted from E. N. Gilbert, ““An
Outline of Information Theory,” Am. Statistician, 12, 13-19 {February, 1958).



2 A DEFINITION OF INFORMATION

the first law of thermodynamics, X-rays. Sometimes we make up
a new word: meson, radio. But often we use a common word:
currenl, mass. .

When a new technical concept is named with a common word,
the word acquires a new meaning,. Tt is impossible 1o use the word
in a technical context until that new meaning has been defined.
Pressing a suit does not mean the same thing to a lawyer that it
does to a tailor. And informalion does not mean the same thing to
a communications engineer that it does to a police delective.
There is no reason to expecl anyone to know what the word
information means to an information theorist unless he has been
told.

In this ook, we shall give the information theorist’s definition
of information, and some examples of how the word is used in its
technical sense. In this way, we shall indicate why the concept is
useful enough to be worth a name of its own, and attempt to show
that the concept has enough in common with a nentechnical idea
of information that no real violence is done 1o the language in
appropriating this word 1o name it. Then we shall use the new
concept as a tool 10 investigate the properties of certain com-
munication systems and detection systems,

It is possible simply to state a mathematical definition of in-
formation, and proceed to demonsirate some of its properties.
However, such an approach is likely to be unconvincing, hecause
the definition itself does not indicate just why it was chosen. As
an alternative, we shall discuss some reasonable and useful prop-
ertics which we can hope a new definition of information will
have, and use them 1o narrow down the search.

1.2 A Generalized Communication System

A generalized communication system is illustrated in Figure 1.1.
The first element of this system is an information source. Although
we have not yet defined what we mean by information, assume
that the information source is a person talking. The output of the
information source is called a message. 1 the information source
is a person lalking, the message is what he says.
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The next element in the communication system is a fransmitter.
The transmitter transforms the message in some way and produces
a signal suitable for transmission over the next element of this
m%m.:.wB“ the communication channel. The input to the transmitter
is the message, and the output of the transmitter is the signal.
If the transmitter is a telephone handset, the signal is an electrical
current proportional to the pressure of the sound waves impinging
on the mouthpiece of the instrument.

TRANSMITTED TRANSMITTED RECEIVED RECEIVED
MESSAGE SIGNAL SIGNAL MESSAGE
INFORMATION TRANS-
HANNEL RECEIVER] += DESTINATION
SOURCE MITTER
NOISE AND
DISTORTION

Figure 1.1 A generalized conununication system.

The next element of this communication system is the chaniel.
This is the medium used to transmit the signal from the transmitter
to the receiver. While going through the channel, the signal may
be altered by noise or distortion. In principle, noise and distortion
may be differentiated on the hasis that distortion is a fixed opera-
tion applied to the signal, while noise involves statistical and un-
predictable perturbations. All or part of the effect of distortion
can be corrected by applying the inverse operation or a partial
inverse operation, but a perturbation due to noise cannot always
be removed, because the signal does not always undergo the same
change during transmission. In practice, the gamut of perturbation
runs from noise to distortion. The input to the channel is the
signal, sometimes called the iransmitted signal. The output of the
channel is the received signal, supposed lo be in some sense a
faithful representation of the transmitted signal.
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The next element in this idealized communication system is the
receiver. This operates on the received signal and attempts Lo re-
produce from it the original message. It will ‘ordinarily perform
an operation which is approximately the inverse of the operation
performed by the transmitter. The two operations may differ
somewhat, however, because the receiver may also be required to
combat the noise and distortion in the channel. The input to the
receiver is the received signal, and the outputl of the receiver is
the received message.

The last element of this communication system is the destina-
tion. This is the person or thing for whom the message is intended.

1.3 Information Defined in Mathematical Terms

An intuitively and aesthetically desirable definition of amount
of information will be a measure of time or cost of transmitting
messages. When applied to a message source, the defnition will
give us a measure of the cost or time required to send the output
of the message source to the destination. When applied to a chan-
nel, in the form information capacity of a channel, it will give a
measure of how long il takes to transmil the message generated
by one message source, or of how many message sources can be
accommodated by one channel. We should like to he able to say
that two comparable information sources generate twice as much
information as one, and that two comparable transmission chan-
nels could transmit twice as much information as one.

The moment we identify information with the cost or the time
which it takes to transmit a message from a message source lo a
destination an interesting new fact emerges: Information is not
so much a property of an individual message as il is a property of
the whole experimental situation which produces the messages.
For example, such utterances as: “How are you?,” “Glad to meet
you,” “Happy birthday,” “Coengratulations on the birth of your
child,” “Best Wishes to Mother on Mother’s Day,” carry very
little information. These phrases belong to a very small set of
polite stercotyped utierances, normally used in certain stereotvped
circumstances. The telegraph company has taken advantage of this

]
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fact by listing on its telegraph blanks some 100 stereotyped mes-
sages for use in appropriate stereotyped situations. The customer
chooses a message, and the signal transmitted by the telegraph
company contains only the few symbols necessary to identify the
particular message which has been chosen. At the receiving office,
a clerk reconstitutes the stereotyped message for transmission to
the destination. The fact that such a stereolyped message contains
less information than most utterances containing the same num-
her of words is reflected in the lower cost to send such a message.

In order to get an effective definition of information, then, we
shall consider not only the message generated or transmitted, but
also the set of all messages of which the one chosen is a member.
The message source may be considered as an experimental selup
capable of producing many different outcomes at different times
or under different stimuli, and the messages as the outcome of
one particular experiment. If the possible messages form a sel of
a finite number of distinct entities, like English words, the source
is called a discrete source. If the possible messages form a set in
which individual members can differ minutely, like acoustic waves
at a telephone, the source is called a continuous source. These
categories are nol exhaustive, but comprise most cases of praclical
interest.

"EXPERIMENT X"

\. S Figure 1.2 An idealized
INFORMATION A pquaLLy information
SOURCE T LIKEW source.
>_ OUTCOMES

Consider an experiment X whose outcome is to be transmitted
(see Figure 1.2). We will be particularly interested in cases in
which the outcome of experiment X is an honest message, say
written English or a television picture, but for the moment let
us consider experiments in general. First of all, suppose experi-
ment X has n equally likely outcomes. In this special case the
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definition of information evolves naturally from the following

argument.

EXPERIMENT X

EXPERIMENT Y
SOURCE n

EXPERIMENT Z

SOURCE

n=n, n,

Figure 1.3 Two information sources combined into one.

The information in the message about X will be some function
f(n). Suppose X is a compound experiment (see Figure 1.3) con-
sisting of two independent experiments ¥ and Z, which have n,
and n» equally likely outcomes. The total number of outcomes of
the compound experiment is the product of n; and ne. Trans-
mitting the outcome of X is equivalent to transmilting the out-
comes of Y and Z separately. Thus the information of X must be
the sum of the informations of Y and Z; that is,

.\.A;v = .\AEV |_|\.¢Sv
where

no=

This functional equation has many solutions. For example, f(n)
might be the logarithm of ny, or () might be the number of factors
into which n may be decomposed as a product of primes. How-
ever, there are other requirements of f(n). The time required to
transmit the outcome of experiment X will certainly be an in-
creasing function of n. Ilence, we need consider only those solu-
tions of the functional equation that are increasing functions of
n. The only such solutions turn out to be constant multiples of
log n; that s,
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f(n) = clogn

The simplest possible experiment we'can imagine is one which
has two equally likely outcomes, like flipping a coin. We use the
information associated with such an experiment as the unit for
measurement of mformation and call it one bit. When this unit
has been defined, the information in an experiment with n equally
likely outcomes is then precisely logs n bits.

Let us now test this definition of information and see if it does
the things that we expect [rom it. For example, what is the infor-
mation associaled with an experiment whose outcome is certain?
The experiment might be. for example, to see whether the sun
will rise between midnight and noon tomorrow. There is only one
outcome possible:

n=1
The information associaled with this experiment is
H=1log.1 =0

When the outcome of the experiment is a foregone conclusion,
the information carried by the conclusion is zero.

What is the information associated with an experiment which
has eight equally likely outcomes? According to our formula, the
information should be equal to*

log8 =3

That is, 1t should have just three times as much information as
that associated with flipping a coin. We can show that this is in-
deed the case by exhibiting the {ollowing code. Let the eight equally
likely outcomes be identified as

HHH

HHT

Hra

THH

HTT

THT

TTH

rrr

U * All logarithins are to the base 2 unless the contrary is specihed.
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The form of the code makes it obvious that the outcome of this
experiment can be associated uniquely with the outcome of a suc-
cession of three coin-flipping experiments, and conversely. From
the point of view of transmitting the information, it makes no
difference whether the code word represents the outcome of three
coin-flipping experiments or of one experiment with eight equally
likely outcomes. Therefore, the information contained in one
experiment with eight equally likely outcomes is three times that
contained in an experiment like flipping a coin with two equally
likely outcomes, that is,

H=10g8=3=1log2+log2 +log2

What happens if the various outcomes of the experiment are
not equally likely? It is not immediately obvious that the definition
of information can be extended. However, we can make a good
try in the following way. Let us assume a situation (see Figure 1.4)

™
UPPER

SOURCE TOTAL

N2
LOWER

77N

Figure 1.4 An idealized source with outputs ol unequal probability.

where the experiment has n equally likely outcomes, grouped into
two groups, an upper group of ny and a lower group of ns, such
that

n+ne=n
Let us assume that we are not really interested in the particular
message generated by the experiment, but only in whether the
message is of the upper or of the lower group. We then have a

situation where the significant outpul is one of two messages, hav-
ing probabilities )
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1
Pt
for the upper message, and
L]
A ny -+ na

for the lower, respectively. One way to find out how much infor-
mation is associated with this is to start with the information
associated with the n equally probable outcomes, and subtract the
excess information with the ny or ns possible messages in the two
subgroups. The information associated with one message among n
equally likely messages, is

logn

The information associated with one message among n; equally
likely messages is

log ny

This occurs not all the time, however, but only for a proportion
of the time equal to ni/n. The information associated with one
of ns equally likely messages is

Hom g

and this occurs for a proportion of the time equal to ns/n. Per-
forming the arithmetic, we get
n

H = logn — -*log ny— =2

1 n

log ny
= —pilogpir — p2 log ps

Since py and p» are less than unity, their logarithms are negalive.
Thus, we can see that the information ff is positive.

This argument suggests a form for the amount of information in
a message generated by experiment X having n possible outcomes
which are not all equally likely. Let the various oulcomes have
probabilities p1, ps, . . ., pu. In this case, the amount of informa-
tion in the message generated by the experiment X is defined to be




10 A DEFINITION OF INFORMATION
H(x) = —pilog pi — p2logpe — -+ — pulog pa

T
= 2 — pilog p: _
t=1
This sum bears a formal resemblance Lo a quantity called entropy
in statistical mechanics. For this reason H(x) is also called the
entropy [unction of p1, pa, . .., pu.
Let us now look at this definition 1o see if we think it is ap-
propriale as a measure of information. First of all, when the n
outcomes are equally likely,

oy |
Bz

log pi = —logn

n

2 —pilogpi= 2. =logn

i=1 i=1 TT

as it should.

It will be shown in the next section that the information H(x)
generated by a discrete source with a fixed number of messages
is a maximum if all the messages are equally probable. This fits
our intuilive nolion well: If all outcomes of the experiment are
equally likely, the message must bear all the information we re-
ceive about the outcome; but if the outcomes are unequally likely,
we have in advance something that a gambler, a stock speculator,

EXPERIMENT X

Hiy)
EXPERIMENT Y

INDEPENDENT Hixl

EXPERIMENT Z

H{z)

Figure 1.5 Illustrating the summing of information from twa

independent sources: H{x) = H(y) + H(z).
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or a weather [orecaster would instantly recognize as information,
and the additional information contribuled by the message itsell
is less by that amount.

What il the experiment X consists of two independent experi-
ments Y and Z? (See Figure 1.5.) Here the arithmetic is quite
complicated, but ultimately we find

H(x) = Hy) + H(2)

In words, the information associated with X is the sum of infor-
mation of its constituent experiments ¥ and Z. If YV and Z are
not stalistically independent* (see I'igure 1.6), then
H(x) < H(y) + H(z)

This again is reasonable. Some of the H(y) bits of information
about the ¥ experiment give information about the possible out-
come of the Z experiment and so are counted twice in the sum
H(y) + H{(2). So far, the definition of information which we have
come up with seems satisfactory.

EXPERIMENT X

Hiy)
EXPERIMENT Y

H{x}
NOT INDEPENDENT,

EXPERIMENT Z
Hiz}

Figure 1.6 Illusirating the summing ol information [rom two
nonindependent sources: H{x) < H(y) + H(3).

* Imagine the experiments ¥ and Z performed many times, and suppose
that the results of the ¥ experiment are classified into sets according to the
outcome of the Z experiment. Examine the probability distribution of the
results of the ¥ experiment in each set: If the distribution does not vary
rom set Lo sel, ¥ and Z are statistically independent. In plain but less precise
language, the expected result of ¥ is the same whatever the result of Z.
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1.4 Maximum Information from a Discrete Source

This tract originated with a set of lectures, during which it was
often desirable to save time and energy by saying “it turns oul
that” or “it can be proved that,” rather than to deal in detail
with every point. Doubting Thomases could be reassured on the
spol, by filling in any hiatus in the logic upon request.

This flexibility is lost in print: What is stated, is stated, and
what is left out is lelt out, and there is no second chance. Never-
theless, the same economy is desirable. A good deal is still left
out, but as evidence of good faith a point will be proved here to
show the reader what he is missing.

It was stated earlier that the information generated by a dis-
crete source with a fixed number n of outcomes is a maximum if
the n outcomes are equally likely. How is this proved?

The public presentation of a proof usually begins with a state-
ment of particular hypothesis and conditions, of unknown origin,
and proceeds to the desired result as neatly as peeling a banana.
But practitioners of the art, and amateurs who read the books of
George Polya, realize that a proof is developed much differently:
One assumes that all necessary requirements are met (what is
“necessary”” will be decided later) and forges ahead optimistically.

This is a maximum problem, so we try differential calculus. The
m%mﬁ:w to be maximized is 7, the variables p;. They are related
thus:

H= 2 — pilog pi

i=1

There is an auxiliary condition on the variables:

n
M Pe= 1
im1
This is tailor-made for the method of Lagrange’s multipliers:

H— VM.?.

[l

2 (N — log pi)p:

o)
on; (H — \2ps)

AN—logp, —1=0
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logp; = =1+ X forall p;
1,
pi=- for all p;
\H = logn

So far, so good, but it is not yet a proof: We must show that
the “‘solution” meets all the conditions of the problem, and that
it is in fact a maximum.

One additional condition is

0<p:=1

for all ¢

This, together with > p; = 1, can he construed as defining a
closed set consisting of a domain D including all points satisfying
the first auxiliary condition for which 0 < p; < 1, together with
its boundary. The condition is helpful: It allows us to invoke a
general theorem that a bounded function on a closed set achieves
its maximum and minimum. Can you show that I is bounded
over this set? You will find it desirable Lo evaluate

lim (—plogp) =0
p—0
and adopt the convention that, whenever any p; takes the value
0, we replace the corresponding term in the sum by the limit.

We must also be wary of a maximum or a minimum on the
houndary. You can show easily that if p; = 1 for any i, the result-
ing value of H is not a maximum. Hence, at least two of the
various p; are different from 0, and none equal 1. Looking back-
ward from a possible solution in which p; = 0 [or some Z, you can
throw out the terms for which this occurs and do the problem
over with only those terms for which p; # 0 at the maximum.
The resulting H is less than that already formed. Thus points on
the boundary are ruled out.

The function achieves its maximum, hut not on the houndary.
What else is needed to assure us that the unique point found by
differentiation is the maximum? Some extra condition is required
to guarantee that at the maximum, the function is sufficiently
smooth: For the method based on differentiation to be valud, it
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suffices that at all points within the domain D the partial deriva-
tives of H exist and are continuous. The outline of the proof is
now complete.

The proof is really not yet complete. The big gap has been filled,
but many little gaps remain. What passes for a prool at one time
before one jury may be rejected at another time or by another
audience. Our idea of what constitutes a valid proof is culturally
conditioned, just like our idea of what constitutes virtue. But
pursuit of this train of thought leads rapidly away from informa-
tion theory.

The discovery that information is a maximum when the proba-
bilities of the discrete outcomes are equal is misleading unless we
know how sharp the maximum is. In fact, it is not very sharp.
Figure 1.7 shows the information in a binary experiment as a func-

10 &
osf i
06~ i

o 1-H
oaf- dos
ozl i e
0 | | | !

10
¢} 0.2 ,04 0.6 0.8 0
U_
L | | L |
10 08 0.6 0.3 Y] -
P.

Figure 1.7 Information in one binary choice as a [unction of

probability distribution:; H = —pilogapi — pu logy pa
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tion of the probabilities p;, p: of the two outcomes. The maximum
information is 1 bit, achieved when p, = p» = .5. When the
probabilities are .2, .8, the amount of information falls to .722
bit. When the probabilities are as unequal as .1, .9, the output
falls just below half a bit; and for distribution .01, .99, the output
is somewhat below one-tenth bit.

When there is a large number of choices, the situation is much
the same. For example, suppose there are /V outcomes with proba-

N
bilities p, = b= AM L=%)71; that is, the probability of occur-
i
rence of the kth most probable is proportional to &% Then the
N
information H = M,. —pilog p; is precisely logs N for « = 0. For
1
large NV, the information is asymptotically logs NV for all @ in the
range 0 < a <1, and for « = 1, H ~ }log: V. The case @ = 1
corresponds fairly closely to the distribution of words in a single

user’s vocabulary, in which case it is sometimes called “Zipf’s
Taw.”

Exercise for the Reader

Show thal, [or large &V, if

N -1
=kl 2k 0<a<l
k=1
then
d o
H= >, —pr log pe = log N — - log e | o(1)
=1 =

Exercise for the Reader

Show that, {or large IV, if

N
Pr = e T S
k=1

—1
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then
N
H= MI?HQWE
= flog V- log log NV — vlogse + o(1)
where v = 5772+ - iz Euler’s constant.

1.5 Recapitulation

Let us recapitulate briefly. We started out with a model for a
communication system that had an information source at one end
and a destination at the other end. We have been looking for a
definition of information that would be proportional to the time
or the cost it takes to transmit the message from the message
source to the destination. In order to get a frm hold on the
problem, we successively restricted the information source until
it was capable simply of putting forth n equally probable messages.
In this case, we successfully defined information as log n. We have
generalized this definition slightly to the entropy function, which
defines the amount of information generated by a message source
capable of generating one of a finite set of n messages with known
probability distribution. We have verified that this definition of
information fulfills some elementary intuitive notions of how a
measure of quantily of information ought to behave.

In a way, it does not seem that we have gone very far. The
message source that we considered is extremely restricted, for it
allows nothing more general than signals made up of discrete,
uniquely distinguishable characters, such as teletypewriter mes-
sages. It does not include any message represented by a continu-
ous waveform, such as the sound pressure of speech or the video
signal which will generate a television picture. But surprisingly,
the major hurdle in defining quantity of information has already
been passed. In spite of the fact that speech waves and television
video signals are continuous signals, in any real-life situation it is
possible to distinguish only a finite number of tones or of picture
intensities. The case of continuous messages can be reduced to
the case of discrete messages already discussed, and the definition
of quantity of information can be directly adapted 1o this use.

Applications to Discrete Channels

2.1  Examples of Discrete Sources

< Let us now apply the definition of information which has just
been stated to some discrete sources. Let us suppose that .::w
experiment under consideration is that of shuffling a deck of 52
cards, and that the message is the particular order of the cards
in the deck after shuffling. We shall define a perfect shuffle to mean
that all of the possible orderings of the 52 cards are equally prob-
able. Let us see how much information there is in a perfect
shuffling experiment. The number of possible arrangements of En
cards, according to well-known formulas in combinatorial mﬂm:\m_m.,
is 52! The amount of information associated with this experi-
Tl Al 1) « 8 8- L5 g, B e B B Lo G, s Lv Tv B Loom

24,
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ment is
log 52! = 225.7 bits

Now let us look at another kind of shuffling experiment: Cut
the deck into two packs, top (7) and bottom (B), at a random
Place, and then interleave 7 and B together. The interleaving
operation consists of 52 steps, at each of which the bottom card
of either T or B falls onto the top of the shuffled deck. The shuffle
is completely described by a sequence of 52 letters T or B. (The
ith letter is 7" if at the ith step the card fell from the hottom of
packet T') The position of the cut may be found from the sequence
by counting the number of 77s. There are only 2% possible se-
quences of T and B, and hence only 25 possible outcomes of the
shuffling experiment. Even if we suppose all these outcomes to
be equally probable, the maximum amount of information asso-
ciated with this shuffling experiment is log of 282, or 52 hits.

Exercise V'

How many times do yeu have to ¢at and interleave a deck =

in order 1o achieve something mv?,&igmt:m a perfect shuffle?
We learned carlier that the information associated with a
sequence of independent experiments is not greater than the
sum of the informations developed by the experiments inde-
pendently. Each cut and interleave shuffling operation gener-
ates at most 52 bits of information. A perfect shuflle generates
225.7 bits of information. Therefore, no sequence of fewer
than 5 cutling and interleaving shuffles could possibly generate
a perfect shuffle. We can say with confidence that to shuffle
a deck fairly by cutting and interleaving, you must repeat
the operation at least 5 times. There is no guarantee, of
course, that this will produce a perfect shuffling operation:
All we have found out is that if you cut and interleave [ewer
\ than 5 times, it certainly will not produce a perfect shuflle.

As another example, let us consider the information content of
ordinary written English. To simplify the problems, let us talk
about “telegraph English,” which has no punctuation, no para-
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graphs, no lower case letters, and so forth. In this case, we have

+ 27 symbols, the letters a to z and a space.

To get an upper limit to the amount of information, we can
simply assume that all 27 symbols are am.:m:u\ probable. This m@.ﬂ
an upper limit to the amount of information of log 27 = 4.76 bits
per letter. o o

This estimate is certainly pessimistic, because we know that the
letters are not equally probable. By carrying out a count of letters
in a sufficiently large sample of text, we can get an idea of F@
relative probabilities of spaces and letters in English text. Using
these data, we can apply the formula we have developed to find
oul that the information in English text is not more than about
4 bits per letter.

26-LETTER| _H=log 26!
KEY
- H= H{y) +log 26!
40-LETTER T\
TEXT Hiy)

Figure 2.1 Inlormation in a 40-letter text coded with a simple
substitution code.

This estimate can be refined somewhat with observations taken
from cryptography. Consider the construction &,..m substitution
cryplogram. In such a cryptogram, for each letter in Em.mgrm_um.ﬁ
some other letter is substituted. The table which tells which letter
is substituted for which is called the key, and it is not hard to
find that the number of possible keys is 26!. If we view the crypto-
gram (see Figure 2.1) as a compound experiment X whose two
parts are Y, the communication of the clear text, .Ei Z, ,.::w
choice of a key from one of 26! possibilities, the total information
associated with this compound experiment is no greater than
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H{(y) + log 26! bits. We understand that substitution cryptograms
of 40 letters can usually be solved, that is, given a 40-letter crypto-
gram, the information in both the text and the key can he re-
covered. Since 40 letters can contain no more than 40 log 27 bits
of information, one concludes that

40log 27 > H(y) + log 26!
and hence that the information in a 40-letter English message is
H(y) < 401og 27 — log 26! ~ 100

The information in an English message is consequently no greater
than 2.5 bits per letter.

By using more and more refined arguments, it has heen shown*
that the information content of ordinary English text is about 1
bit per letter. <

8
FExercise \k
A Problem Solved with Infotmation Theory

You are given a balance and 9 coins. Eight of the coins
are equal in weight, but the ninth is defective, and weighs
somewhat more or less than each of the other 8.

Problem: Devise a way to determine, in 3 weighings, which
is the odd coin, and whether it is lighter or heavier than the
others.

It appears that we can put equal numbers of coins in the
2 pans of the balance, upon which it will tip to the left, bal-
ance, or tip to the right. The most information you can get
per weighing is

logs 3 = 1.58 bits

In 3 weighings, not more than 4.74 bits can be generated.
Assuming complete ignorance of the identitv of the odd coin,
and whether it is light or heavy, you see that you are asked
to identify one of 18 equally likely possibilities. This requires

* C. E. Shannon, “Prediction and Entropy of Printed English,” Bell System
Tech. J., 30, 50-64 (January, 1951).
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log: 18 = 4.16 bits < 4.74 bits

So far, there is no conflict.

There are, however, a great many ways to put the coins on
the balance, and we can use information theory to devise a
strategy. For a first attempt, try the following:

Strategy: At each weighing, generate the maximum pos-
sible amount of information.

But how much information is gained in 1 weighing? Let

p1 = probability that balance tips left
pu = probability that balance does not tip
pr = probability that balance tips right

Then the information generated in one weighing is -

H = —pilogp: — pilogps — pr log pr

We know this is a maximum if the probabilities are all equal.
Tence, the strategy leads to a simpler statement: If possible,
weigh so that tipping to the left, balancing, and tipping to
the right are equally probable.
mcw@omo we put n coins in the left pan, n in the right, and
9 — 2n are not weighed. Then
P b= m@lqmr@
n
pPr= pr = m

For all of them to be equal, n must be 3.

Hence the first step: Three coins (say 1, 2, and 3) i the
left pan; 3 (say 4, 5, and 6) in the right pan, and 3 (say 7,
8, and 9) lelt unweighed.

What is the second step? We must distinguish 2 cases: The
balance does or does not balance in the first step.

If the balance does balance in the first step, the delective
coin is 7, 8, or 9. We can throw away 1 to 6, and repeat the
same reasoning to find a desirable attempt: Weigh 1 coin in
each pan, and have 1 unweighed. The reader can verify that
this leads to a solution.
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But suppose the balance tilts in step 1. What then? Tn
order to achieve a probability 1 that it will balance in step 2,
it is easy to see that only 4 of the 6 coins 1 to 6 can be
in step 2. But to have equal probability that the balance will
tip left or right is harder: We must, with probability 3, shift
the odd coin to the other pan. These conditions are mmt:mmmm,
for example, by

Removing coins 1 and 4
Interchanging coins 2 and 5
Leaving coins 3 and 6

It is easy to see that if the result of step 2 is an even bal-
ance, then 1 or 4 is odd; if the sense of imbalance is different
from step 1, then 2 or 5 is odd; and if the sense of imbalance
is the same as in step 1, then 3 or 6 is odd. The third weighing
tells which is odd, and whether it is heavy or light.

Thus the strategy is completely successful.

You will note that the full potential of the third step is not
used, suggesting that more information could be drawn from
3 weighings. Perhaps you could start with 10 or 11 coins and
still tell which is odd and whether it is light or heavy. On the
other hand, no sequence of 3 steps each leading to an even
balance can ever tell whether the odd coin is lighter or
heavier. As you can see, the problem of determining the
largest number of coins from which you can sort and classily
1 odd coin in 3 weighings is rather subtle.

Exercise for the Reader

Given 27 coins, 26 of equal weight and 1 heavier than the
rest. Devise a strategy to identify the heavy coin in 3 weigh-
ings. Can you solve the analogous problem with more than
27 coins?

2.2 Coding for Noiseless Channels

It is useful here to introduce the idea of an encoder. An encoder
may be described as a purely deterministic device which converts
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a message in one set of symhols into a new message, usually in a
different set of symbols. For example, a handwritten English
message may be converted into a pattern of holes punched on a
tape, then into a sequence of electrical impulses on a teletype
wire, back into English letters by a teletypewriter, and finally
translated from English into French. The first three of these four
operations are reversible encodings. That means that each in-
coming message can be encoded in only one way, and conversely,
that no two different incoming messages are ever encoded alike.
Translation from English into French, however, is not usually an
encoding, because it involves random choices. For example, the
English word “robbery” may be translated into either “vol” or
“brigandage.” Even assuming that all such choices were settled
in advance, one would undoubtedly find some French words repre-
senting several English ones, for example, “vol”” for both “rob-
bery” and *‘theft.” Then the encoding would not be reversible.

A reversible encoder transforms messages into encoded messages
in a one-to-one way; one gets the same amount of information
from the encoded message as from the original message. One
would like to conclude that a reversible encoder driven by an
information source is a new information source which generates
information at the same rate as the driving source. However, this
conclusion requires further assumptions ahout the encoder. For
exarnple, the encoder might just store the incoming message, and
re-emit it at a slower rate. Such an encoder would ultimately
require an unlimited amount of storage space. However, if a re-
versible encoder has only a finite number of internal states (for
example, il it is made from a finite number of relays or magnetic
cores or switching tubes with a finite memory), then the encoder
output has the same information rale as ils input.

We also need to talk about an idealized noiseless channel for
transmission of discrete messages. An ideal channel has a finite
list of symbols which it can transmit without error. A certain time
is required to transmit each symhol. The times required Lo trans-
mit the various symbols may not be the same.

The combination of a channel fed by a source may be regarded
as a new source which generales the message at the receiving end
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(see Figure 2.2). The information rate of the received message
will depend on the transmitting source. For example, suppose a
channel can transmit English letters and word spaces at the rate
of 1 symbol per second. When the channel transmits English
text, it has a rate, as we have seen hefore, of about 1 bhit per
second. If the same channel is connected to a source which pro-
duces letters and spaces independently, with probability 1/27 for
each kind of symbol, the rate is log 27 = 4.76 bits per second.
The largest rate at which one can signal over a channel, for all
choices of the source, is called the capacity of the channel. The
capacity of the English letter channel just discussed is 4.76 bits
per second.

EQUIVALENT NEW SOURCE

SOURCE *l CHANNEL T‘l

Figure 2.2 The output of a
communication
channel regarded
as an information
source.

In the example of the English text source connecied to the
English letter channel, one feels that much of the capability of
the channel is wasted. With an English text source as inpul, the
channel transmits information at a rate much lower than that
attainable with other sources.

Is it possible to speed up the source and still use the same
channel? The answer is yes, and an encoder provides the means
for doing so. It is possible to encode English text reversibly in
such a way that the encoded messages use fewer letters than the
original messages. Then the encoded text may be transmitted at
a higher information rate than the original text could.

In general, if we say that a channel has a capacity of C bits per
second, we mean that the output of any source of information
rate less than C bits per second may be transmitted over the chan-
nel by placing a suitable reversible encoder between the source
and the channel. No reversible encoder will transform the output
of any source having an information rate greater than C so that
it can be transmitted through the channel without error.
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To illustrate how the encoding process works, consider a very
simple example. The source has two symbols: 4, with probability
4. and B, with probahility 4. Successive symbols are generated
independently, at a rate of 80 per minute (see Figure 2.3).

SOURCE:F; A (prob. 8] Figure 2.3 An information
80 LETTERS :

ob. .2}
PER MINUTE Blp source.

The information rate of this source is
H= —-2log.2 — 8log.8

= .72 bit per letter

= .72 —

H 80
F 60

= .96 bit per second

So much for the source: now for the channel. The channel (see
Figure 2.4) tiransmits two symbols, zero and one, without con-
straint, and requires precisely 1 second of transmission time to
transmit either symbol. The channel capacity is thus 1 bit per
second.

CHANNEL d : fsee.
TRANSMITS Oor 1
AT 60 .
SYMBOLS PER MINUTE Cafs -

w1 Ea .i i
Figure 24 A communicalion channel. (Will the information from the
source of Figure 2.3 pass through the channel?)

The simplest encoder we can imagine is the one shown in the
following table:
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Weighted
Letters Probability Digits  number of digits
A .8 0 8
B 2, 1 2
1.0

The total weighted number of digits is
1.0 digit per letter = 80 digits per minute
An example of a ‘stream of letters and their encoding digits is

\hwm\u.\_mm.\ﬁamm\u‘wmwmmhmhmhmbhwmmmm
010000100000101000 000001010000

With such an encoder, 80 digits per minute are generated, and the
channel will not tolerate them, A better encoder is shown in the

next tahle.
Weighted
Letters Probability _ Digits number of digits
A4 .64 0 .64
AB .16 10 32
BA .16 110 .48
BR .04 111 12
- 1.56

Here, instead of encoding 1 message letler at a time, we group the
message i bunches of 2 letters, and encode the 2 letters to-
gether. The relative probabilities of various groups of 2 letters vary
over quite a range, as indicated in the second column. In order to
gain efliciency in the coding, we use a short group of digits for
a more common letler group, and reserve longer groups of digits
for the less common letter groups. The last column, weighted num-
ber of digits, is the probability of a given digit group multiplied
by the number of digits in the group. Summing the last column
over all letter groups, one finds an average digit-group length of
1.56 digits for 2 letters, or .78 digit per letter. The encoder turns
out 62.4 digits per minute, still more than the channel will take.
The same stream of letters is now encoded thus:
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ABAAAABAAAAABABAAAAAAAABABAAAA
100 0110 0 0110110 0 0 0 1010 0 0

The 30 letters are now encoded in 24 digits, 9 one’s and 15 zero’s.
The reader can verify that if the digits are run together without
spaces, they can still be separated unambiguously into symbols
[rom our finite alphabet. Such a code is called segmented.

We can carry this a bit [urther, as shown in the next table.

Weighted

Letters Probability Digits number of digits
AAA 512 0 012
AAB 128 100 .384
ABA .128 101 .384
BAA .128 110 384
ABB .032 11100 .160
BAB .032 11101 160
BBA4 .032 11110 160
BEB .008 11111 _-040
2.184

In this example, each group of 3 letters is encoded in a single
digit group. The more common letter groups are mboca.mﬁ.ﬂ in short
digit groups, and the less common groups in longer digit groups.
Doing the arithmetic exactly as befare, we m:..m that .::w average
digit-group length for three letters is 2.184 digits. This results in
an average of .728 digit per letter, and the encoder produces 58.24
digits per minute, which can be transmitted hy .:.6 orm::&.. We
already know that the information content of this source is .72
bit per letter, and therefore, no reversible encoder could encode
it in less than .72 digit per letter on the average. The E:.uogmﬂ.
illustrated is only about 1 per cent less efficient than the ideal.
The stream of letters given before is now encoded thus:

ABAAAABAAAAABABAAAAAAAABABAAAA
101 0 110 011101 0 0 100 101 0

The stream of 30 letters is now encoded in 22 digits, 11 ones
and 11 zeros. The fact that the number of ones and zeros grow
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closer and closer together is not an accident. We know that the
maximum capacity of a 2-symbol source is reached only when the
two symbols have equal probability. Our encoder must bow to
this fact if it is to use the channel efficiently.

This encoder must have some storage capacity, and must intro-
duce some delay. For example, 3 incoming letlers must arrive and
be stored before the outgoing digit group is identified. Furthermore,
the long digit groups are transmitted more slowly than the in-
coming 3-letter groups are generated; and signals must be stored
until a string of 44 4’s allows the encoder and transmission chan-
nel to catch up. In this simple example, no finite storage capacity
will guarantee flawless performance, but the probability of exceed-
ing a storage requirement of a few hundred symbols is extremely
small.

The above example illustrates the general coding theorem, which
can be loosely expressed as follows: Given a channel and a message
source that generates information at a rate less than the channel
capacity, it is possible to devise an encoder which will allow the
output of the message source, suilably encoded, to be transmitted
through the channel.

Exercise
How to Win at 20 Questions”

In a popular parlor game called 20 Questions,” one person
who is “it”” mentally identifies something, usually a material
object or a living heing, knowledge of which is available to
the other participants. The others try to make a unique
identification by asking questions answerable by “‘yes” or
“no” which are answered truthfully. They are allowed a
maximum of 20 such questions. In one form of the game,
they are allowed 3 additional questions of the form “isit...?”
(naming a particular tentative unique identification). If an
answer Lo such a question is “yes,” the asker wins; otherwise,
the one who is “it” wins. The winner is “it” for the next
round.

The amount of information available in the replies to 23
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yes—no questions is no more than 23 bils. Experience shows
that the game is proportioned so that one of the askers usually
wins, not the one who is “it.”” This reflects on the sparseness
of human imagination. The language has several hundred
thousand words; a large library has several million books;
there are several hundred million people living in the United
States. A truly random choice {rom one of these classes would
require at least 19, 22, or 27 bits, respectively, to identify.
With the additional questions required to identify the par-
ticular class, the total probably exceeds 23, and the one who
is “it” could win the game with high probability.

A simpler way for the ambitious contestant to win is to
pick a large number — say 8 digits or more. Of course, it is
uninspiring for the others to hear, after 23 fruitless questions,
“I was thinking of 55,880,402,” or even “I was thinking of
the 17th name in the second column of the forty-first page
of the telephone directory of the seventh largest city in
Indiana.” If you use such a strategy, you will win with high
probability, but your adversaries will find it dull and prob-
ably will criticize you for spoiling the game. Your decision
about whether to adopt this strategy depends on how great
a price you are willing to pay to win.



